ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
X-energy begins irradiation testing at INL
Advanced reactor and fuel developer X-energy has officially begun confirmatory irradiation testing at Idaho National Laboratory on its TRISO-X fuel. The testing, which is taking place over the course of the next 13 months, will evaluate the fuel across a variety of operating scenarios and—if all goes according to plan—will be instrumental in qualifying it for commercial use.
Rei Kimura, Satoshi Wada
Nuclear Science and Engineering | Volume 193 | Number 9 | September 2019 | Pages 1013-1022
Technical Paper | doi.org/10.1080/00295639.2019.1576454
Articles are hosted by Taylor and Francis Online.
A small modular reactor (SMR) is a promising candidate for future nuclear energy; therefore, many organizations are developing SMRs. Some SMRs have a power output higher than 100 MW(electric). This paper, however, describes a much smaller reactor of less than 10-MW(electric) power output: a microreactor. The microreactor shares the same advantages as SMRs, i.e., passive safety, portability, and maintainability. This paper studies a calcium hydride (CaH2) heat pipe–cooled reactor in which heat pipes and CaH2 accomplish passive removal of generated heat, fuel inventory reduction, high-temperature operation, and prevention of a loss-of-coolant accident. The CaH2 allows operation at a core temperature of 800°C, which improves the efficiency of the reactor system. In the case of moderator function loss, hydrogen dissociation may occur at the higher temperature; however, negative temperature reactivity of the hydride-moderated core prevents reactor runaway. The negative temperature reactivity is realized by the poison nuclides 113Cd and 151Eu, which have a capture resonance peak at thermal energies in high-temperature operation. It was confirmed that the proposed method is capable of controlling the reactor over the whole burnup period.