ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
My Story: John L. Swanson—ANS member since 1978
. . . and in 2019, on his 90th birthday.
Swanson in 1951, the year of his college graduation . . .
My pre-college years were spent in a rural suburb of Tacoma, Wash. In 1947, I enrolled in Reed College, a small liberal arts school in Portland, Ore.; I majored in chemistry and graduated in 1951. While at Reed, I met and married a young lady with whom I would raise 3 children and spend the next 68 years of my life—almost all of them in Richland, Wash., where I still live.
I was fortunate to have a job each of my “college summers” that provided enough money to cover my college costs for the next year; I don’t think that is possible these days. My job was in the kitchen/dining hall of a salmon cannery in Alaska. Room and board were provided and the cannery was in an isolated location, so I could save almost every dollar of my salary.
Dean Wang, Tseelmaa Byambaakhuu
Nuclear Science and Engineering | Volume 193 | Number 9 | September 2019 | Pages 982-990
Technical Paper | doi.org/10.1080/00295639.2019.1582316
Articles are hosted by Taylor and Francis Online.
Fast sweeping methods are efficient iterative techniques originally developed to solve the steady-state Hamilton-Jacobi equations and later used for the hyperbolic conservation laws. For these boundary value problems, their solution information propagates along characteristics starting from the boundary. These fast sweeping methods take advantage of this property and achieve very fast convergence based on a Gauss-Seidel–type iteration approach and alternating-direction sweeping strategy. In this paper, we solve the SN neutron transport equation using the high-order Lax-Friedrichs Weighted Essentially Non-Oscillatory (LF-WENO) fast sweeping methods. Our numerical tests in one and two dimensions demonstrate that the proposed new sweeping methods can achieve better accuracy and positivity preserving than the diamond difference method for the SN solution.