ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Remembering ANS member Gil Brown
Brown
The nuclear community is mourning the loss of Gilbert Brown, who passed away on July 11 at the age of 77 following a battle with cancer.
Brown, an American Nuclear Society Fellow and an ANS member for nearly 50 years, joined the faculty at Lowell Technological Institute—now the University of Massachusetts–Lowell—in 1973 and remained there for the rest of his career. He eventually became director of the UMass Lowell nuclear engineering program. After his retirement, he remained an emeritus professor at the university.
Sukesh Aghara, chair of the Nuclear Engineering Department Heads Organization, noted in an email to NEDHO members and others that “Gil was a relentless advocate for nuclear energy and a deeply respected member of our professional community. He was also a kind and generous friend—and one of the reasons I ended up at UMass Lowell. He served the university with great dedication. . . . Within NEDHO, Gil was a steady presence and served for many years as our treasurer. His contributions to nuclear engineering education and to this community will be dearly missed.”
Stefano Terlizzi, Dan Kotlyar
Nuclear Science and Engineering | Volume 193 | Number 9 | September 2019 | Pages 948-965
Technical Paper | doi.org/10.1080/00295639.2019.1583948
Articles are hosted by Taylor and Francis Online.
This paper presents the theoretical foundations and the practical implementation of the Fission Matrix Decomposition (FMD) method. The FMD method is a hybrid technique for the rapid and accurate solution of the criticality transport problem in highly heterogeneous media. The method relies on a two-stage sequence, conceptually similar to the approach adopted by production codes, such as CASMO/SIMULATE. First, a database of local fission matrices and coupling coefficients is generated through Monte Carlo calculations. The database is then used to reconstruct the full fission matrix, from which multiplication factor and fission source distribution are computed with a deterministic eigensolver. The FMD method is here tested against two stylized problems: (1) the pressurized water reactor unit-cell problem and (2) the resource-renewable boiling water assembly problem. The accuracy and computational efficiency of the FMD method are compared against the continuous-energy Monte Carlo Fission Source Iteration method, the Fission Matrix-Based Monte Carlo approach, and the lattice-diffusion approximation. For the analyzed cases, the FMD was 100 times faster than diffusion, while maintaining transport accuracy with a mean absolute percent error lower than 1% on the fission source distribution and difference in multiplication factor below 7 pcm.