ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Resurrecting Three Mile Island
When Exelon Generation shut down Three Mile Island Unit 1 in September 2019, managers were so certain that the reactor would never run again that as soon as they could, they had workers drain the oil out of both the main transformer and a spare to eliminate the chance of leaks. The company was unable to find a buyer because of the transformers’ unusual design. “We couldn’t give them away,” said Trevor Orth, the plant manager. So they scrapped them.
Now they will pay $100 million for a replacement.
The turnaround at the reactor—now called the Crane Clean Energy Center—highlights two points: how smart Congress was to step in with help to prevent premature closures with the zero-emission nuclear power production credit of 0.3 cents per kilowatt-hour (only two years too late), and how expensive it is turning out to be to change course.
Dan Gabriel Cacuci
Nuclear Science and Engineering | Volume 193 | Number 9 | September 2019 | Pages 927-947
Technical Paper | doi.org/10.1080/00295639.2019.1582934
Articles are hosted by Taylor and Francis Online.
The solution of the customary adjoint Boltzmann equation for linear transport of particles and radiation, referred to as the “adjoint flux,” plays a prominent role in reactor physics, shielding, control, and optimization as a weighting function for cross-section processing, optimization, Monte Carlo acceleration procedures, and sensitivity and uncertainty analyses. All of the textbooks and scientific works published thus far use the same procedure to derive “the” adjoint Boltzmann operator, thereby conveying inadvertently the misleading impression that this traditional procedure is the only way to obtain “the” adjoint Boltzmann operator, and that the form of “the” adjoint operator thus derived is universally unique. None of the works published in the literature thus far touches on the fact that the customary textbook-form of the adjoint Boltzmann operator is actually derived in a particular Hilbert space, which is endowed with a specific inner product that is based on integrating spatially over the domain’s spatial volume such that Gauss’ divergence theorem holds. As this work will show, however, the Hilbert space that has been implicitly used in all of the published works thus far is not the only possible Hilbert space for deriving operators that are adjoint, in the respective Hilbert space, to the forward Boltzmann operator. Alternative Hilbert spaces may be used just as legitimately, and may actually be more suitable than the customary Hilbert space for computing adjoint functions to be used in inner products involving various forward and/or adjoint fluxes and forward and/or adjoint source terms.
By presenting paradigm illustrative examples in three-dimensional spherical coordinates, this work shows that although a unique form of the adjoint Boltzmann operator is obtained for each Hilbert space in which the respective adjoint operator is constructed, distinct Hilbert spaces will produce distinct adjoint Boltzmann operators accompanied by distinct forms of the corresponding bilinear concomitants on the respective spatial domain’s boundary. The fundamental practical reason for using alternative Hilbert spaces is to obtain alternative adjoint functions and/or Green’s functions that may be less singular than the customary adjoint function and/or Green’s functions (in the customary Hilbert space) and would consequently be computable numerically. As this work shows, such situations arise when attempting to use the adjoint sensitivity analysis methodology in the conventional Hilbert space for computing sensitivities to cross sections, isotopic number densities, etc., of responses of flux and/or power detectors placed near or at the center of the spherical coordinates. In such sensitivity analysis problems, the singularities of the conventional adjoint Boltzmann equation in the conventional Hilbert space may preclude its use, but the requisite sensitivities can nevertheless be computed efficiently using an alternative adjoint Boltzmann equation in an alternative Hilbert space. The consequences of this powerful breakthrough new concept of using alternative adjoint operators in alternative Hilbert spaces are highlighted by presenting a paradigm benchmark problem that admits a closed-form exact solution. This benchmark problem shows that the customary adjoint equation becomes singular at the sphere’s center, so the conventional adjoint flux is therefore noncomputable there, but the alternative adjoint transport equation in a judiciously chosen alternative Hilbert space is everywhere nonsingular and can therefore be used to compute the requisite sensitivities. By indicating the path for using alternative Hilbert spaces, this work opens new conceptual procedures for solving problems that have hitherto been unsolvable in the framework of the conventional adjoint particle transport equation.