ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
MURR expansion set back by Mo. state legislature
Spirits were high last month when a ribbon cutting was held at the University of Missouri for a $20 million, three-story, 47,000-square-foot addition, dubbed MURR West, to the MURR research reactor facilities.
Thi Thanh Thuy Nguyen, Kwang Soon Ha, Jin Ho Song, Sung Il Kim
Nuclear Science and Engineering | Volume 193 | Number 8 | August 2019 | Pages 916-925
Technical Paper | doi.org/10.1080/00295639.2019.1574118
Articles are hosted by Taylor and Francis Online.
A new empirical model is proposed for estimating the amount of volatile iodine in an aqueous phase. The volatile iodine concentration is estimated for highly irradiated CsI solutions in which the pH of the solution changes. The reaction of CsI solution with water radiolysis products is not balanced because radiolysis products are continuously produced under irradiation. Thus the kinetic of the chemical equation is important to determine iodine behavior in a CsI solution. An empirical model for the kinetic equation including the oxidation and reduction reaction is proposed. The proposed model was validated with a wide range of experimental data. A comparison of the experiments and predictions by the model indicated that the predicted volatile iodine from CsI solution with a concentration of 10−3 to 10−4 M was in good agreement. For 10−5 M CsI solution, the predicted iodine concentration was much smaller than experimental data due to the fact that I− was rapidly converted to IO3−.