ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
My Story: John L. Swanson—ANS member since 1978
. . . and in 2019, on his 90th birthday.
Swanson in 1951, the year of his college graduation . . .
My pre-college years were spent in a rural suburb of Tacoma, Wash. In 1947, I enrolled in Reed College, a small liberal arts school in Portland, Ore.; I majored in chemistry and graduated in 1951. While at Reed, I met and married a young lady with whom I would raise 3 children and spend the next 68 years of my life—almost all of them in Richland, Wash., where I still live.
I was fortunate to have a job each of my “college summers” that provided enough money to cover my college costs for the next year; I don’t think that is possible these days. My job was in the kitchen/dining hall of a salmon cannery in Alaska. Room and board were provided and the cannery was in an isolated location, so I could save almost every dollar of my salary.
Thi Thanh Thuy Nguyen, Kwang Soon Ha, Jin Ho Song, Sung Il Kim
Nuclear Science and Engineering | Volume 193 | Number 8 | August 2019 | Pages 916-925
Technical Paper | doi.org/10.1080/00295639.2019.1574118
Articles are hosted by Taylor and Francis Online.
A new empirical model is proposed for estimating the amount of volatile iodine in an aqueous phase. The volatile iodine concentration is estimated for highly irradiated CsI solutions in which the pH of the solution changes. The reaction of CsI solution with water radiolysis products is not balanced because radiolysis products are continuously produced under irradiation. Thus the kinetic of the chemical equation is important to determine iodine behavior in a CsI solution. An empirical model for the kinetic equation including the oxidation and reduction reaction is proposed. The proposed model was validated with a wide range of experimental data. A comparison of the experiments and predictions by the model indicated that the predicted volatile iodine from CsI solution with a concentration of 10−3 to 10−4 M was in good agreement. For 10−5 M CsI solution, the predicted iodine concentration was much smaller than experimental data due to the fact that I− was rapidly converted to IO3−.