ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
M. J. Rapp, D. P. Barry, G. Leinweber, R. C. Block, B. E. Epping, T. H. Trumbull, Y. Danon
Nuclear Science and Engineering | Volume 193 | Number 8 | August 2019 | Pages 903-915
Technical Paper | doi.org/10.1080/00295639.2019.1570750
Articles are hosted by Taylor and Francis Online.
The electron linear accelerator housed in the Gaerttner Linear Accelerator Center at Rensselaer Polytechnic Institute was used to generate a pulsed neutron source to measure the neutron total cross section of tantalum, titanium, and zirconium from 0.4 to 25 MeV. Neutron transmission measurements were made using the time-of-flight method with neutron flight paths of approximately 100 and 250 m. The long flight paths combined with narrow neutron pulse widths, fast detector responses, fast electronics, and data collection system provide good energy resolution for the measurements. A high signal-to-background ratio through much of the energy range combined with low statistical errors resulted in low uncertainties on cross sections.
The results are presented and compared with the major nuclear data evaluations. Each measurement identifies regions where the neutron total cross sections could be reevaluated. The total cross-section measurements presented here can help nuclear data evaluators improve neutron total cross-section data in future evaluations.