ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Resurrecting Three Mile Island
When Exelon Generation shut down Three Mile Island Unit 1 in September 2019, managers were so certain that the reactor would never run again that as soon as they could, they had workers drain the oil out of both the main transformer and a spare to eliminate the chance of leaks. The company was unable to find a buyer because of the transformers’ unusual design. “We couldn’t give them away,” said Trevor Orth, the plant manager. So they scrapped them.
Now they will pay $100 million for a replacement.
The turnaround at the reactor—now called the Crane Clean Energy Center—highlights two points: how smart Congress was to step in with help to prevent premature closures with the zero-emission nuclear power production credit of 0.3 cents per kilowatt-hour (only two years too late), and how expensive it is turning out to be to change course.
Rose Montgomery, Robert N. Morris, Bruce Bevard, John Scaglione
Nuclear Science and Engineering | Volume 193 | Number 8 | August 2019 | Pages 884-902
Technical Paper | doi.org/10.1080/00295639.2019.1573602
Articles are hosted by Taylor and Francis Online.
The High Burnup Spent Fuel Data Project, sponsored by the U.S. Department of Energy Office of Nuclear Energy, is focused on understanding the effects of long-term storage and transportation on high burnup (HBU) (>45 GW days per tonne uranium) light water reactor fuel. The project includes 32 HBU spent nuclear fuel (SNF) assemblies (the project assemblies) that are stored in a typical independent spent fuel storage installation (ISFSI) and 25 “sister rods”—9 SNF rods that were removed from the fuel assemblies prior to insertion to the ISFSI and 16 SNF rods removed from similar HBU assemblies. The sister rods provide a baseline of the condition of the HBU rods before loading, drying, and long-term dry storage. The project assemblies will be inspected after 10 years, and the physical state of the stored rods will be compared with the condition of the sister rods to identify any changes in physical properties during the dry storage period. This work focuses on key results from the nondestructive postirradiation examinations of the sister rods and summarizes the results of detailed visual examinations, gamma scans, dimensional measurements, and eddy current liftoff measurements of the combined Chalk River unidentified deposits and oxide layer on the waterside surface of the rod. The data are used to calculate fuel rod and pellet stack growth rates, estimated remaining fuel rod plenum volumes, and the percentage change in fuel rod cladding diameter.