ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Indrajeet Singh, S. B. Degweker, Amod Kishore Mallick, Anurag Gupta
Nuclear Science and Engineering | Volume 193 | Number 8 | August 2019 | Pages 868-883
Technical Paper | doi.org/10.1080/00295639.2019.1576453
Articles are hosted by Taylor and Francis Online.
In a recent paper, we described the development of a method for calculating exact collision probabilities between different regions (namely, fuel kernels, graphite matrix, moderator, and coolant) of a lattice cell of a high temperature reactor (HTR) of the pebble bed variety. The method was shown to adequately represent the double heterogeneity in such reactors. In the present paper, we use some of the results obtained in that paper to construct a fast Monte Carlo algorithm for treatment of HTRs. This paper discusses the theoretical basis of the Monte Carlo algorithm, its implementation for the case of a lattice cell with the energy variable treated using a multigroup library, and results obtained. The method can be easily extended to full-core calculations using point cross-section data.