ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Nuclear Dirigo
On April 22, 1959, Rear Admiral George J. King, superintendent of the Maine Maritime Academy, announced that following the completion of the 1960 training cruise, cadets would begin the study of nuclear engineering. Courses at that time included radiation physics, reactor control and instrumentation, reactor theory and engineering, thermodynamics, shielding, core design, reactor maintenance, and nuclear aspects.
Robert E. Henry
Nuclear Science and Engineering | Volume 193 | Number 7 | July 2019 | Pages 790-799
Technical Paper | doi.org/10.1080/00295639.2018.1560855
Articles are hosted by Taylor and Francis Online.
Evaluations of severe accident conditions for water-cooled reactors with metallic fuel pin cladding must consider the oxidation of this material for accident sequences that could lead to high metal temperatures in a steam environment. Such representations are included in integral accident analysis computer codes. If the oxidation causes sufficiently high temperatures to melt, or liquefies the core materials, the core geometry changes as the melt drains downward and freezes on cooler structures promoting blockages and redirection of steam flowing through the fuel assemblies. Once this configuration forms, the accident condition is characterized as the late phase of core oxidation. The Phebus in-reactor experiments investigated hydrogen generation in this compacted core state and measured the generation rates over several thousand seconds. This paper investigates the role of countercurrent steam-hydrogen flow to the debris upper surface as a limit for the generation rate and finds that this provides a close description of the behavior for the Phebus experiments. Applying this mechanism to reactor accident conditions shows how this should be considered in the Severe Accident Management Guidelines.