ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NextGen MURR Working Group established in Missouri
The University of Missouri’s Board of Curators has created the NextGen MURR Working Group to serve as a strategic advisory body for the development of the NextGen MURR (University of Missouri Research Reactor).
Tony H. Shin, Jesson Hutchinson, Rian Bahran, Sara A. Pozzi
Nuclear Science and Engineering | Volume 193 | Number 6 | June 2019 | Pages 663-679
Technical Note | doi.org/10.1080/00295639.2018.1560758
Articles are hosted by Taylor and Francis Online.
The purpose of this technical note is to consolidate the notations used for describing parameters that pertain to neutron multiplicity mathematics relevant to various applications including nonproliferation, international safeguards, and criticality safety among others. The nomenclatures used in these techniques vary widely depending on the origin of the work and their applications. We aim to consolidate many of the previously used notations in a single document to enhance past, present, and future technical exchanges pertaining to neutron multiplicity. This will help avoid confusion in future publications and will facilitate wider application-independent advancements and utility of peer-reviewed findings. A brief introduction and history of neutron multiplicity counting is presented, followed by a summary of commonly used techniques in a variety of different applications. In each section, we present the notations used in previous publications for the reader’s reference.