ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
In an international industry, regulators cross the border too
Since nuclear physics works the same in Ontario as it does in Tennessee, the industry has been trying to create a reactor that can be deployed on both sides of the border. Now, the Nuclear Regulatory Commission and the Canadian Nuclear Safety Commission have decided that some of their rulings can cross the border too.
Yongping Wang, Yunzhao Li, Tengfei Zhang, E. E. Lewis, M. A. Smith, W. S. Yang, Hongchun Wu
Nuclear Science and Engineering | Volume 193 | Number 6 | June 2019 | Pages 652-662
Technical Note | doi.org/10.1080/00295639.2018.1542883
Articles are hosted by Taylor and Francis Online.
The Generalized Partitioned Matrix (GPM) acceleration method for the Variational Nodal Method (VNM) with diffusion approximation is presented. In the GPM method, the vectors of expansion coefficients of the scalar flux, source, and partial currents are divided into low-order and high-order terms. For each outer iteration, the low-order terms of the flux, fission source, and partial currents are first solved with fixed higher-order terms from the preceding outer iteration, and then a full matrix sweep through the energy groups is performed to update the full set of expansion coefficients. The GPM method increases the CPU time per outer iteration but reduces the overall computational time significantly by reducing the number of outer iterations required for convergence. The GPM acceleration method has been implemented in the NODAL code, and its performance was compared with that of the traditional Partitioned Matrix (PM) acceleration scheme for four problems: two- and three-dimensional C5G7 problems, a NuScale modular core problem, and a large pressurized water reactor problem. The numerical results show that the PM acceleration consistently reduces the computational time by a factor of 2.0 and the GPM acceleration yields two to three times higher speedup than with PM acceleration by reducing the number of outer iterations. The GPM speedups over the unaccelerated VNM range between 4.3 and 6.3. Moreover, the speedup ratio achieved with the GPM acceleration increases with an increasing dominance ratio of the problem since the required number of outer iterations increases with an increasing dominance ratio.