ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Senate to consider Matthew Marzano’s NRC nomination this week
The U.S. Senate’s Committee on Environment and Public Works will consider the nomination of Matthew Marzano to the Nuclear Regulatory Commission during a hearing on Wednesday, September 11.
In July, President Joe Biden named Marzano as his choice to fill the open seat on the five-member commission. The NRC, the nation’s independent regulator of civilian nuclear safety, has been without a tie-breaker for party-line votes among the four current members since commissioner Jeff Baran’s term ended in June 2023.
The NRC has been in the spotlight in recent years as the United States experiences a resurgence in demand for and technology advances in nuclear power. The commission is facing a high volume of license requests and is working to modernize and streamline its review process.
Aaron M. Graham, Benjamin S. Collins, Thomas J. Downar
Nuclear Science and Engineering | Volume 193 | Number 6 | June 2019 | Pages 601-621
Technical Paper | doi.org/10.1080/00295639.2018.1550988
Articles are hosted by Taylor and Francis Online.
The MPACT code is being jointly developed by the University of Michigan and Oak Ridge National Laboratory. It uses the 2-D/1-D method to solve neutron transport problems for reactors. The 2-D/1-D method decomposes the problem into a stack of 2-D planes and uses a high-fidelity transport method to resolve all heterogeneity in each plane. These planes are then coupled axially, using a lower-order solver. With this scheme, three-dimensional (3-D) solutions to the transport equation can be obtained at a much lower cost. The 2-D/1-D method assumes that the materials are axially homogeneous for each 2-D plane. Violation of this assumption requires homogenization, which can significantly reduce the accuracy of the calculation. This paper presents the subray method of characteristics (subray MOC) as a solution to this problem. Subray MOC is a subgrid method that allows local heterogeneities to be directly resolved by method of characteristics while treating the rest of the 2-D plane as axially uniform. This improves the accuracy in the neighborhood of the heterogeneity while minimizing the increase in run time. The method was applied to variations of the C5G7 benchmark problems and compared with a previously developed subgrid method called the subplane collision probabilities (SCP) method. Comparisons were made among results obtained using subray MOC, the SCP method, and no subgrid method. Subray MOC consistently performed best, reducing maximum 3-D power distribution errors from as high as 30% to 2% or less. Furthermore, it consistently outperformed the SCP method with run times that were shorter than the reference calculations.