ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
E. F. Seleznev, V. Bereznev, I. Chernova
Nuclear Science and Engineering | Volume 193 | Number 5 | May 2019 | Pages 495-505
Technical Paper | doi.org/10.1080/00295639.2018.1542866
Articles are hosted by Taylor and Francis Online.
This paper proposes partial neutron transport equations for stationary and transient calculations. The partial equations of neutron transport are based on separately following neutrons born from external source, prompt fission neutrons, and delayed neutrons. The delayed neutrons are described by a system of equations containing one equation for each group. The paper defines the parameters of these equations and presents the results of fast neutron reactor benchmark calculations.
Determination of the field of the external source neutrons in the system of partial equations provides a natural transfer of the source power (in units of neutrons per second) to the core power of energy release from the interaction of the external source neutrons in the reactor core (in units of watt). Thus, an external source neutron is used for the initial normalization of the neutron field based on the required reactor power. Operating with the field of delayed neutrons, in contrast to the field of concentrations of delayed neutron precursors, provides a quantitative assessment of the interaction of these neutrons with the reactor environment, and thus, assesses their contribution to the reactivity effects in fast reactors.
Partial neutron transport equations allow us to extract additional information about the time behavior of the fast neutron reactor.