ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Hans R. Hammer, Jim E. Morel, Yaqi Wang
Nuclear Science and Engineering | Volume 193 | Number 5 | May 2019 | Pages 453-480
Technical Paper | doi.org/10.1080/00295639.2018.1542865
Articles are hosted by Taylor and Francis Online.
In this paper we show the extension of nonlinear diffusion acceleration (NDA) to geometries containing small voids using a weighted-least-squares (WLS) high-order equation. Even though the WLS equation is well defined in voids, the low-order drift-diffusion equation was not defined in materials with a zero cross section. This paper derives the necessary modifications to the NDA algorithm. We show that a small change to the NDA closure term and a nonlocal definition of the diffusion coefficient solve the problems for void regions. These changes do not affect the algorithm for optically thick material regions while making the algorithm well defined in optically thin ones. We use a Fourier analysis to perform an iterative analysis to confirm that the modifications result in a stable and efficient algorithm. Later in the paper, numerical results of our method are presented. We test this formulation with a small, one-dimensional test problem. Additionally, we present results for a modified version of the C5G7 benchmark containing voids as a more complex, reactor-like problem. We compared our results to Texas A&M’s transport code PDT, utilizing a first-order discontinuous formulation as reference and the self-adjoint angular flux equation with void treatment (SAAF), a different second-order form. The results indicate that the NDA WLS performed comparably or slightly worse then the asymmetric SAAF while maintaining a symmetric discretization matrix.