ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Ryota Katano
Nuclear Science and Engineering | Volume 193 | Number 4 | April 2019 | Pages 431-439
Technical Paper | doi.org/10.1080/00295639.2018.1528803
Articles are hosted by Taylor and Francis Online.
The linear combination method is proposed to reduce the higher order mode (HOM) effect on the measurement of the prompt neutron decay constant using the α-fitting method. Conventional α-fitting utilizes the pulsed neutron source and estimates the prompt neutron decay constant by fitting the neutron counts at a single detector after pulse injection with a single exponential function. The proposed method reduces the spatial HOM effect with linear combination of the neutron counts at multiple detectors. For verification, we applied the conventional method and the proposed method to the analytical solution of the diffusion theory and the Monte Carlo simulation to estimate the prompt neutron decay constant of a one-dimensional infinite slab. Comparison of these results indicates that the proposed method enables estimation with the reduced HOM effect as opposed to the conventional method. Through the verification, we confirmed that the proposed method can be a candidate for a measurement method of the prompt neutron decay constant.