ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
October 2024
Fusion Science and Technology
Latest News
ACU gets permit to build nation’s first molten salt university research reactor
The Nuclear Regulatory Commission issued a construction permit yesterday to Abilene Christian University, giving ACU and its partners the go-ahead to build the Molten Salt Research Reactor (MSRR) facility on its Abilene, Texas, campus. The 1-MWt research reactor is the first molten salt–fueled reactor to get a construction permit from the NRC. After Kairos Power’s Hermes, it is the second non–light water reactor construction permit issued by the NRC.
M. M. R. Williams
Nuclear Science and Engineering | Volume 193 | Number 4 | April 2019 | Pages 327-345
Technical Paper | doi.org/10.1080/00295639.2018.1531620
Articles are hosted by Taylor and Francis Online.
A number of approximate probability distribution functions (pdf’s) for the neutron density are examined with reference to low source startup. The most accurate method for determining the safe source strength, to reduce the likelihood of a rogue transient during startup, is that arising from the Pál-Bell equations. When these equations are extended to include space and energy dependence the numerical work becomes extensive. A pdf is developed which gives results that compare favorably with those from the exact solution but requires very much less numerical work. The method is applicable to space- and energy-dependent problems. Extensive numerical examples are given of the new method and of others which have been proposed over the years. In addition, we explore other approximations, unrelated to the generating function, that can lead to substantial computational savings. We have additionally described the principles behind, and provided a simple review of, the low source algorithm from which anyone unfamiliar with low source concepts can benefit.