ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Sweden begins construction of spent fuel repository
The Swedish Nuclear Fuel and Waste Management Company (Svensk Kärnbränslehantering AB, or SKB) broke ground on its spent nuclear fuel repository near the Forsmark nuclear power plant on January 15. SKB, which is owned by Sweden’s nuclear power plants, expects the final repository will be ready for disposal in the 2030s, and will be fully extended in the 2080s.
Jagjit Singh Matharu, Vidya Devi
Nuclear Science and Engineering | Volume 193 | Number 3 | March 2019 | Pages 314-324
Technical Paper | doi.org/10.1080/00295639.2018.1538280
Articles are hosted by Taylor and Francis Online.
This paper presents a novel approach for uncertainty propagation of neutron-induced activation cross-section measurement using unscented transformation (UT). Generally, the first-order sensitivity analysis (sandwich formula) method is used for uncertainty propagation in cross-section measurement. It is based on a linear approximation of Taylor series expansion of the function of input parameters and gives satisfactory results for smooth nonlinear functions having relatively small uncertainties. On the contrary, the UT technique is completely defined by the moments of random process and hence produces better results for error propagation in the nonlinear case with large uncertainties. The UT method is easier to implement and gives results as accurate as the sandwich formula and Monte Carlo techniques. This work examines the application of the UT method in nuclear science as an alternate to the sandwich formula and Monte Carlo methods.