ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Geoffrey R. Bull, Jason O. Oakley, Michael L. Corradini
Nuclear Science and Engineering | Volume 193 | Number 3 | March 2019 | Pages 299-313
Technical Paper | doi.org/10.1080/00295639.2018.1514195
Articles are hosted by Taylor and Francis Online.
The fissioning of uranium in an aqueous solution creates 99Mo, the precursor to 99mTc, but also generates large amounts of hydrogen and oxygen from the radiolysis of the water. When the dissolved gases reach a critical concentration, bubbles will form in the solution, affecting both the fission power and the heat transfer out of the solution. Magnesium sulfate (MgSO4) was chosen as a surrogate for uranium sulfate salt in an aqueous solution for the experiments. A high aspect ratio tank was constructed to measure heat transfer from the solution with internal gas and heat generation. A fritted glass air injection manifold allowed the exploration of bubble characteristics and flow patterns on heat transfer from the heated pool to the cold walls. Experimental data analysis provided heat transfer coefficient values as a function of axial position, power density, and the superficial gas velocity in the pool. Results, including a recommended correlation for average heat transfer coefficients, are provided for superficial gas velocities between 0 and 0.3 cm/s and power densities of 200 and 400 W/L in pH 7 and pH 1 MgSO4 solutions.