ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Geoffrey R. Bull, Jason O. Oakley, Michael L. Corradini
Nuclear Science and Engineering | Volume 193 | Number 3 | March 2019 | Pages 299-313
Technical Paper | doi.org/10.1080/00295639.2018.1514195
Articles are hosted by Taylor and Francis Online.
The fissioning of uranium in an aqueous solution creates 99Mo, the precursor to 99mTc, but also generates large amounts of hydrogen and oxygen from the radiolysis of the water. When the dissolved gases reach a critical concentration, bubbles will form in the solution, affecting both the fission power and the heat transfer out of the solution. Magnesium sulfate (MgSO4) was chosen as a surrogate for uranium sulfate salt in an aqueous solution for the experiments. A high aspect ratio tank was constructed to measure heat transfer from the solution with internal gas and heat generation. A fritted glass air injection manifold allowed the exploration of bubble characteristics and flow patterns on heat transfer from the heated pool to the cold walls. Experimental data analysis provided heat transfer coefficient values as a function of axial position, power density, and the superficial gas velocity in the pool. Results, including a recommended correlation for average heat transfer coefficients, are provided for superficial gas velocities between 0 and 0.3 cm/s and power densities of 200 and 400 W/L in pH 7 and pH 1 MgSO4 solutions.