ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
Hao Zhang, Yanhua Yang
Nuclear Science and Engineering | Volume 193 | Number 3 | March 2019 | Pages 283-298
Technical Paper | doi.org/10.1080/00295639.2018.1512788
Articles are hosted by Taylor and Francis Online.
In this paper, the development of a solver for the Multi-Fluid and Multi-Pressure model (MFMP) is presented. MFMP is the extension of the two-fluid model. In this model, the number of fluids can be greater than or equal to two. The fluids are considered to be in mechanical nonequilibrium. The pressure across the interface is not considered to be equal. A pressure-based and semi-implicit numerical method is proposed. This is different from the method used for the two-fluid model or single-pressure model. The solver is verified by classical two-fluid benchmark problems and multifluid problems. The Multi-Fluid and Single-Pressure model (MFSP) and MFMP are used. Bestion’s model is used in MFMP to consider the nonequilibrium effect of pressure. The computation shows that MFSP is unstable if the number of meshes is large enough, while MFMP is stable for the two-fluid problems and most cases of the multifluid problems. The results of MFMP are in agreement with the reference solution or analytical solution for the two-fluid problems and reasonable for most cases of the multifluid problems.