ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
R. C. Block, J. A. Burke, D. P. Barry, N. J. Drindak, G. Leinweber, K. E. Remley, R. V. Ballad, M. J. Rapp, Y. Danon
Nuclear Science and Engineering | Volume 193 | Number 3 | March 2019 | Pages 269-282
Technical Paper | doi.org/10.1080/00295639.2018.1520526
Articles are hosted by Taylor and Francis Online.
Neutron capture and transmission measurements were carried out from 0.01 to 600 eV on both solid and liquid samples containing elemental cesium (133Cs). Only s-wave resonances were observed in these measurements. These data were analyzed for resonance parameters utilizing the SAMMY Bayesian analysis code to simultaneously fit both the capture and transmission data. Parameters were obtained for 31 cesium resonances up to 600 eV. The thermal capture cross section and capture resonance integral were determined. The thermal capture cross section is 10% larger than the ENDF, JENDL, and JEFF evaluated values but lies within the uncertainty of the most recent measurement by Yoon and Lee [New Phys.: Sae Mulli (Korean Phys. Soc.)., Vol. 61, p. 7 (2011)]. The capture resonance integral has a statistical 1σ error of 2% and lies 1.4σ above the JENDL value, 5.5σ above the ENDF value, and 3.9σ above the JEFF value. The s-wave strength function was determined.