ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
Fusion Science and Technology
January 2026
Latest News
From uncertainty to vitality: The future of nuclear energy in Illinois
Nuclear is enjoying a bit of a resurgence. The momentum for reliable energy to support economic development around the country—specifically data centers and AI—remains strong, and strongly in favor of nuclear. And as feature coverage on the states in the January 2026 issue of Nuclear News made abundantly clear, many states now see nuclear as necessary to support rising electricity demand while maintaining a reliable grid and reaching decarbonization goals.
R. C. Block, J. A. Burke, D. P. Barry, N. J. Drindak, G. Leinweber, K. E. Remley, R. V. Ballad, M. J. Rapp, Y. Danon
Nuclear Science and Engineering | Volume 193 | Number 3 | March 2019 | Pages 269-282
Technical Paper | doi.org/10.1080/00295639.2018.1520526
Articles are hosted by Taylor and Francis Online.
Neutron capture and transmission measurements were carried out from 0.01 to 600 eV on both solid and liquid samples containing elemental cesium (133Cs). Only s-wave resonances were observed in these measurements. These data were analyzed for resonance parameters utilizing the SAMMY Bayesian analysis code to simultaneously fit both the capture and transmission data. Parameters were obtained for 31 cesium resonances up to 600 eV. The thermal capture cross section and capture resonance integral were determined. The thermal capture cross section is 10% larger than the ENDF, JENDL, and JEFF evaluated values but lies within the uncertainty of the most recent measurement by Yoon and Lee [New Phys.: Sae Mulli (Korean Phys. Soc.)., Vol. 61, p. 7 (2011)]. The capture resonance integral has a statistical 1σ error of 2% and lies 1.4σ above the JENDL value, 5.5σ above the ENDF value, and 3.9σ above the JEFF value. The s-wave strength function was determined.