ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A series of firsts delivers new Plant Vogtle units
Southern Nuclear was first when no one wanted to be.
The nuclear subsidiary of the century-old utility Southern Company, based in Atlanta, Ga., joined a pack of nuclear companies in the early 2000s—during what was then dubbed a “nuclear renaissance”—bullish on plans for new large nuclear facilities and adding thousands of new carbon-free megawatts to the grid.
In 2008, Southern Nuclear applied for a combined construction and operating license (COL), positioning the company to receive the first such license from the U.S. Nuclear Regulatory Commission in 2012. Also in 2008, Southern became the first U.S. company to sign an engineering, procurement, and construction contract for a Generation III+ reactor. Southern chose Westinghouse’s AP1000 pressurized water reactor, which was certified by the NRC in December 2011.
Fast forward a dozen years—which saw dozens of setbacks and hundreds of successes—and Southern Nuclear and its stakeholders celebrated the completion of Vogtle Units 3 and 4: the first new commercial nuclear power construction project completed in the U.S. in more than 30 years.
S. Al Issa, M. Murase, A. Tomiyama, K. Hayashi, R. Macián-Juan
Nuclear Science and Engineering | Volume 193 | Number 1 | January-February 2019 | Pages 147-159
Technical Paper – Selected papers from NURETH 2017 | doi.org/10.1080/00295639.2018.1489627
Articles are hosted by Taylor and Francis Online.
Countercurrent flow limitation (CCFL) in a pressurized water reactor hot-leg pipe geometry with a 190-mm pipe diameter was investigated experimentally and numerically at the COLLIDER test facility of the Technical University Munich in the past 3 years. This paper summarizes the most important CCFL findings learned from the COLLIDER test facility and tries to explain the reasons for obtaining different descriptions, results, and conclusions at different CCFL experimental investigations. The factors that can affect CCFL experimental results are explained in detail including some scale effects. The necessary preconditions to compare two sets of data from different CCFL experimental investigations are discussed in detail. The difference among CCFL-related limits/curves is clarified taking data at the COLLIDER as an example. The limits included the limit of the transition from a supercritical into a subcritical flow (SSTL); the onset of CCFL limit (iCCFL) inside the hot-leg pipe; the onset of CCFL limit (eCCFL) at the entrance of the steam generator; the deflooding limit (CCFLd); the CCFL characteristics curve (CCFLch), which predicts the water delivery rate after the onset of iCCFL; and the onset of hysteresis limit. It will be shown that among these limits only SSTL, CCFLch, and eCCFL are original limits while the rest are derivatives of them. In particular, it will be shown that the iCCFL limit is a combination of the SSTL and CCFLch limits. The effect of scale upon the eCCFL’s mechanism (whether a water accumulation or droplet entrainment at the entrance to the steam generator) is clarified via a comparison to a 50-mm CCFL facility at Kobe University. This paper tests the scalability of interface distribution at quasi-stationary conditions (i.e., points along the CCFLch curve) via a comparison of time-averaged interface distributions obtained at similar inlet conditions ( at the COLLIDER 190-mm and Kobe 50-mm channels. The comparison will show that interface distributions (which are directly linked to the pressure drop and interfacial momentum transfer) cannot be scaled at the bend/riser/entrance region because of the influence of the channel diameter upon occurring CCFL mechanism. Meanwhile, the water level gradient can be similar at the horizontal part, but not the relative water depth.