ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
The D&D of SM-1A
With the recent mobilization at the site of the former SM-1A nuclear power plant at Fort Greely, Alaska, the Radiological Health Physics Regional Center of Expertise, located at the U.S. Army Corps of Engineers’ Baltimore District, began its work toward the decommissioning and dismantlement of its third nuclear power plant, this time located just 175 miles south of the Arctic Circle.
Jianan Lu, Jiong Guo, Tomasz Kozlowski, Fu Li
Nuclear Science and Engineering | Volume 193 | Number 1 | January-February 2019 | Pages 131-146
Technical Paper – Selected papers from NURETH 2017 | doi.org/10.1080/00295639.2018.1504545
Articles are hosted by Taylor and Francis Online.
The High-Temperature Gas-Cooled Reactor–Pebble Bed Module (HTR-PM) is a large-scale complex system that includes reactor core, steam generator, helium circulator, and other important components. When integrating these components, coupling problems such as multiphysics problem, multicircuit problem, multiscale problem, and multimodule problem arise in the numerical simulation. The HTR-PM multicircuit system comprises the primary circuit and secondary circuit, which are simulated by two independent codes and coupled by the interface in the once-through steam generator. Although time-consuming, Picard iteration is a feasible and convenient coupling method to integrate two components because oversolving in the early stages of the iteration causes strong fluctuation between circuits. To address this problem, optimization of the maximum subiteration number and convergence precision have been implemented to improve the efficiency and numerical stability of the Picard iteration. The Dynamic Residual Balance method, an improved version of the Residual Balance method, is proposed to prevent oversolving inside the subiterations. It takes into consideration fluctuation between circuits, and this method is robust in a wide range of cases. Moreover, the nonlinear preconditioned Jacobian-Free Newton-Krylov method, which has less fluctuation between circuits than Picard iteration, is a coupling scheme that updates all the solution variables from the primary circuit and the secondary circuit simultaneously. Outstanding convergence and efficiency can be obtained by implementing the proper preconditioner in this HTR-PM multicircuit problem. The downside is that it requires significant modification to the legacy codes.