ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2021)
February 9–11, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
February 2021
Nuclear Technology
January 2021
Fusion Science and Technology
November 2020
Latest News
Former NRC chairs issue vaccine timeline recommendation to CDC
Five former chairmen of the U.S. Nuclear Regulatory Commission—Stephen Burns, Allison Macfarlane, Nils Diaz, Richard Meserve, and Dale Klein—signed a letter to José Romero, Arkansas health secretary and chair of the Centers for Disease Control and Prevention (CDC) immunization advisory committee, requesting that the advisory committee update its recommendation for COVID-19 vaccine allocation guidance for the energy workforce (including nuclear energy workers).
Currently, the CDC has four phases for the COVID-19 vaccine rollout. Those phases are numbered:
Chen Wang, Xu Wu, Tomasz Kozlowski
Nuclear Science and Engineering | Volume 193 | Number 1 | January-February 2019 | Pages 100-114
Technical Paper – Selected papers from NURETH 2017 | dx.doi.org/10.1080/00295639.2018.1499279
Articles are hosted by Taylor and Francis Online.
In the framework of Best Estimate Plus Uncertainty methodology, the uncertainties involved in model predictions must be quantified to prove that the investigated design is reasonable and acceptable. The uncertainties in predictions are usually calculated by propagating input uncertainties through the simulation model, which requires knowledge of the model or code input uncertainties, for example, the means, variances, distribution types, etc. However, in best-estimate system thermal-hydraulic codes such as TRACE, some parameters in empirical correlations may have large uncertainties that are unknown to code users, and their uncertainties are therefore simply ignored or described by expert opinion.
In this paper, the issue of missing uncertainty information for physical model parameters in the thermal-hydraulic code TRACE is addressed with inverse uncertainty quantification (IUQ), using the steady-state void fraction experimental data in the Organisation for Economic Co-operation and Development/Nuclear Energy Agency PSBT (Pressurized water reactor Sub-channel and Bundle Tests benchmark. The IUQ process is formulated through a Bayesian perspective, which can yield the posterior distributions of the uncertain inputs. A Gaussian process emulator is employed to significantly reduce the computational burden involved in sampling the posteriors using the Markov Chain Monte Carlo method. The posterior distributions are further used in forward uncertainty quantification and sensitivity analysis to quantify the influences of those parameters on the quantities of interest. The results demonstrate the effectiveness of the IUQ framework with a practical nuclear engineering example and show the necessity of quantifying and reducing uncertainty of physical model parameters in future work.