ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
My Story: John L. Swanson—ANS member since 1978
. . . and in 2019, on his 90th birthday.
Swanson in 1951, the year of his college graduation . . .
My pre-college years were spent in a rural suburb of Tacoma, Wash. In 1947, I enrolled in Reed College, a small liberal arts school in Portland, Ore.; I majored in chemistry and graduated in 1951. While at Reed, I met and married a young lady with whom I would raise 3 children and spend the next 68 years of my life—almost all of them in Richland, Wash., where I still live.
I was fortunate to have a job each of my “college summers” that provided enough money to cover my college costs for the next year; I don’t think that is possible these days. My job was in the kitchen/dining hall of a salmon cannery in Alaska. Room and board were provided and the cannery was in an isolated location, so I could save almost every dollar of my salary.
Yang Liu, Nam Dinh
Nuclear Science and Engineering | Volume 193 | Number 1 | January-February 2019 | Pages 81-99
Technical Paper – Selected papers from NURETH 2017 | doi.org/10.1080/00295639.2018.1512790
Articles are hosted by Taylor and Francis Online.
Two-fluid model-based multiphase computational fluid dynamics (MCFD) has been considered one of the most promising tools to investigate a two-phase flow and boiling system for engineering purposes. The MCFD solver requires closure relations to make the conservation equations solvable. The wall boiling closure relations, for example, provide predictions on wall superheat and heat partitioning. The accuracy of these closure relations significantly influences the predictive capability of the solver. In this paper, a study of validation and uncertainty quantification (VUQ) for the wall boiling closure relations in the MCFD solver is performed. The work has three purposes: (1) to identify influential parameters to the quantities of interest (QoIs) of the boiling system through sensitivity analysis (SA), (2) to evaluate the parameter uncertainty through Bayesian inference with the support of multiple data sets, and (3) to quantitatively measure the agreement between solver predictions and data sets. The widely used Kurul-Podowski wall boiling closure relation is studied in this paper. Several statistical methods are used, including the Morris Screening method for global SA, Markov Chain Monte Carlo for inverse Bayesian inference, and confidence interval as the validation metric. The VUQ results indicate that the current empirical correlations-based wall boiling closure relations achieved satisfactory agreement on wall superheat predictions. However, the closure relations also demonstrate intrinsic inconsistency and fail to give consistently accurate predictions for all QoIs over the well-developed nucleate boiling regime.