ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
February 2023
Nuclear Technology
Fusion Science and Technology
Latest News
Registration is open for NRC’s RIC
The Nuclear Regulatory Commission has opened registration for its 35th annual Regulatory Information Conference (RIC 2023) The conference, themed “Navigating the Nuclear Future,” will be held March 14–16 in North Bethesda, Md., and will be the first in-person RIC since 2019, although the event will also be accessible virtually.
Register now. Registration, which is required to attend, can be completed by filling out the conference registration online form. The conference is free to the public.
Qian Zhang, Qiang Zhao, Zhijian Zhang, Liang Liang, Won Sik Yang, Hongchun Wu, Liangzhi Cao
Nuclear Science and Engineering | Volume 192 | Number 3 | December 2018 | Pages 311-327
Technical Note | doi.org/10.1080/00295639.2018.1501977
Articles are hosted by Taylor and Francis Online.
The deviations brought by the embedded self-shielding method with the pseudo-resonant isotope model is investigated. Numerical results show that error sources mainly come from the inconsistency in the heterogeneous resonance integral (RI) generated in the two-dimensional square pin–cell case with reflective boundary conditions. The high-order resonance interference effect also contributes to the deviation. The black assumption on the macroscopic cross section of the fuel is proposed to enhance the consistency in the generation of the heterogeneous RI table. Numerical results show that the modification on the original embedded self-shielding method improves the accuracy of the cross-section prediction in the multifuel lattice systems.