ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Kairos Power finalizes contract on HALEU for Hermes
Kairos Power has finalized a contract with the Department of Energy to receive high-assay low-enriched uranium (HALEU) from the agency for the company’s Hermes low-power demonstration reactor, currently under construction in Oak Ridge, Tenn.
In partnership with Los Alamos National Laboratory, Kairos intends to use the DOE-provided material to produce HALEU TRISO fuel pebbles for Hermes. The company views the Hermes test reactor and the fuel fabrication program as crucial to the eventual success of its power-producing Hermes 2 demonstration plant, also to be sited in Oak Ridge, and future commercial fluoride salt–cooled high-temperature reactors.
Timothy Flaspoehler, Bojan Petrovic
Nuclear Science and Engineering | Volume 192 | Number 3 | December 2018 | Pages 254-274
Technical Paper | doi.org/10.1080/00295639.2018.1507185
Articles are hosted by Taylor and Francis Online.
In neutral-particle transport shielding problems, variance-reduction methods are used in Monte Carlo (MC) simulations to bias the progression of tracked particles toward user-defined detectors or regions of interest. These biasing techniques allow for converged results in areas that would otherwise be poorly sampled due to low neutron or gamma fluxes relative to the fixed source. One widely used state-of-the-art methodology in shielding simulations is the Consistent Adjoint-Driven Importance Sampling (CADIS) method, which is a hybrid transport methodology that uses deterministic adjoint solutions to define weight window (WW) targets for particle splitting, rouletting, and source biasing during MC. However, for large problems, the WW data can require prohibitively large amounts of memory (tens to hundreds of gigabytes). This can make the simulation not feasible with the available computational resources, or it can restrict execution to a small fraction of nodes with large enough memory, thus significantly reducing the available resources and increasing the turnaround time needed to complete intended analyses.
A novel methodology and data structure have been developed and implemented within the MONACO and MAVRIC sequences of the Scale 6.1 code package that greatly reduces memory requirements for storing WW maps by orders of magnitude. The data structure is accompanied with an algorithm that determines mesh reduction through coarsening and refinement using contributon response theory. Large memory savings are achieved by using separate block-structured grids for each energy group. The implementation of this methodology leads to a fractional increase in biased MC simulation time due to tracking particles through a more complex data structure storing the WW targets. For large shielding problems, enhanced parallelism enabled by memory reduction more than compensates for the decline in biased MC performance resulting in an effective speedup in solution time. Here, the improvements and drawbacks in the methodology are demonstrated on the relatively small but well-known Pool Critical Assembly shielding benchmark. The methodology showed a reduction in memory of from 163 to 194 times, with only a limited slowdown in biasing efficiency between 1% and 9%.