ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Timothy Flaspoehler, Bojan Petrovic
Nuclear Science and Engineering | Volume 192 | Number 3 | December 2018 | Pages 254-274
Technical Paper | doi.org/10.1080/00295639.2018.1507185
Articles are hosted by Taylor and Francis Online.
In neutral-particle transport shielding problems, variance-reduction methods are used in Monte Carlo (MC) simulations to bias the progression of tracked particles toward user-defined detectors or regions of interest. These biasing techniques allow for converged results in areas that would otherwise be poorly sampled due to low neutron or gamma fluxes relative to the fixed source. One widely used state-of-the-art methodology in shielding simulations is the Consistent Adjoint-Driven Importance Sampling (CADIS) method, which is a hybrid transport methodology that uses deterministic adjoint solutions to define weight window (WW) targets for particle splitting, rouletting, and source biasing during MC. However, for large problems, the WW data can require prohibitively large amounts of memory (tens to hundreds of gigabytes). This can make the simulation not feasible with the available computational resources, or it can restrict execution to a small fraction of nodes with large enough memory, thus significantly reducing the available resources and increasing the turnaround time needed to complete intended analyses.
A novel methodology and data structure have been developed and implemented within the MONACO and MAVRIC sequences of the Scale 6.1 code package that greatly reduces memory requirements for storing WW maps by orders of magnitude. The data structure is accompanied with an algorithm that determines mesh reduction through coarsening and refinement using contributon response theory. Large memory savings are achieved by using separate block-structured grids for each energy group. The implementation of this methodology leads to a fractional increase in biased MC simulation time due to tracking particles through a more complex data structure storing the WW targets. For large shielding problems, enhanced parallelism enabled by memory reduction more than compensates for the decline in biased MC performance resulting in an effective speedup in solution time. Here, the improvements and drawbacks in the methodology are demonstrated on the relatively small but well-known Pool Critical Assembly shielding benchmark. The methodology showed a reduction in memory of from 163 to 194 times, with only a limited slowdown in biasing efficiency between 1% and 9%.