ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
December 2024
Fusion Science and Technology
November 2024
Latest News
Nuclear News 40 under 40
Welcome to the inaugural Nuclear News 40 Under 40! A year in the making, this list was a difficult undertaking for the NN staff, there being so many qualified and enthusiastic candidates to review. The task was further complicated by the great diversity of roles that exist within the nuclear community—from academia to labs and from utilities to government positions. Whatever their specific niche, those selected represent the exceptional talent, vision, and drive that is transforming the nuclear sector across the community. These 40 young professionals have shown remarkable commitment, innovation, and leadership in advancing nuclear science and technology, paving the way for a future in which nuclear power and applications will continue to play a vital role in addressing global challenges.
Michael Jarrett, Brendan Kochunas, Edward Larsen, Thomas Downar
Nuclear Science and Engineering | Volume 192 | Number 3 | December 2018 | Pages 219-239
Technical Paper | doi.org/10.1080/00295639.2018.1507186
Articles are hosted by Taylor and Francis Online.
The Two-Dimensional (2-D)/One-Dimensional (1-D) method allows pin-resolved computational transport solutions for large, full-core light water reactor simulations at relatively low computational cost compared to a true three-dimensional (3-D) transport method. The 2-D/1-D method constructs an approximation to the 3-D transport equation with (1) a 2-D transport equation in the radial variables and , discretized on a fine radial spatial grid, and (2) a 1-D transport (or approximate PN) equation in the axial variable , discretized on a radially coarse spatial grid. The 2-D and 1-D equations are coupled through transverse leakage (TL) terms. In this paper, a new 2-D/1-D P3 method with anisotropic transverse leakages and anisotropic homogenized 1-D cross sections (XSs) is proposed to improve the accuracy of conventional 2-D/1-D with pin homogenization. It is shown that only the polar component of the anisotropic homogenized XS has a significant effect on the solution; the azimuthal component is negligible. However, the polar and azimuthal components of the leakage terms are both important. The new method is implemented in the 2-D/1-D code Michigan PArallel Characteristics Transport (MPACT). The method in this paper is shown to achieve nearly 3-D transport accuracy with sufficient refinement in space and angle. The improvement of this new method compared to the previous 2-D/1-D method in MPACT is most notable in problems with strong axial leakage and sharp axial discontinuities, such as control rod tips or part-length rods. The method is computationally more expensive than the existing 2-D/1-D method with isotropic TL and XSs, but this additional cost may be justified when the axial flux shape does not vary smoothly due to axial heterogeneity and needs to be resolved well.