ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Michael Jarrett, Brendan Kochunas, Edward Larsen, Thomas Downar
Nuclear Science and Engineering | Volume 192 | Number 3 | December 2018 | Pages 219-239
Technical Paper | doi.org/10.1080/00295639.2018.1507186
Articles are hosted by Taylor and Francis Online.
The Two-Dimensional (2-D)/One-Dimensional (1-D) method allows pin-resolved computational transport solutions for large, full-core light water reactor simulations at relatively low computational cost compared to a true three-dimensional (3-D) transport method. The 2-D/1-D method constructs an approximation to the 3-D transport equation with (1) a 2-D transport equation in the radial variables and , discretized on a fine radial spatial grid, and (2) a 1-D transport (or approximate PN) equation in the axial variable , discretized on a radially coarse spatial grid. The 2-D and 1-D equations are coupled through transverse leakage (TL) terms. In this paper, a new 2-D/1-D P3 method with anisotropic transverse leakages and anisotropic homogenized 1-D cross sections (XSs) is proposed to improve the accuracy of conventional 2-D/1-D with pin homogenization. It is shown that only the polar component of the anisotropic homogenized XS has a significant effect on the solution; the azimuthal component is negligible. However, the polar and azimuthal components of the leakage terms are both important. The new method is implemented in the 2-D/1-D code Michigan PArallel Characteristics Transport (MPACT). The method in this paper is shown to achieve nearly 3-D transport accuracy with sufficient refinement in space and angle. The improvement of this new method compared to the previous 2-D/1-D method in MPACT is most notable in problems with strong axial leakage and sharp axial discontinuities, such as control rod tips or part-length rods. The method is computationally more expensive than the existing 2-D/1-D method with isotropic TL and XSs, but this additional cost may be justified when the axial flux shape does not vary smoothly due to axial heterogeneity and needs to be resolved well.