ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
Tanay Mazumdar, Anurag Gupta
Nuclear Science and Engineering | Volume 192 | Number 2 | November 2018 | Pages 153-188
Technical Paper | doi.org/10.1080/00295639.2018.1499340
Articles are hosted by Taylor and Francis Online.
In our earlier work, a computer code based on Method of Characteristics (MOC) was developed to solve the neutron transport equation for mainly assembly-level lattice calculations with reflective and periodic boundary conditions and to some extent core-level calculation with a vacuum boundary condition. Performance of the MOC code was also demonstrated with flat and linear flux approximations. Since neutron transport calculations involve extensive computation, an attempt is made to develop an efficient numerical recipe that will reduce the computation time. First, a conventional MOC solution of the neutron transport equation is transformed into a matrix equation to apply the Krylov subspace iteration method for accelerating the solution. It is found that even in the most sophisticated and compact formats, forming the matrix equation explicitly by storing its nonzero elements requires extremely large computer memory. Hence, an alternate way to apply the Krylov iteration is demonstrated by incorporating the effect of the matrix-based approach into the solution without storing the matrix elements. This computationally viable and novel acceleration technique is used in combination with the existing formalism of flat as well as linear flux approximation to solve a number of benchmark problems. Results show significant improvement in terms of faster convergence of the solution over the conventional inner-outer iteration without compromising accuracy.