ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Tanay Mazumdar, Anurag Gupta
Nuclear Science and Engineering | Volume 192 | Number 2 | November 2018 | Pages 153-188
Technical Paper | doi.org/10.1080/00295639.2018.1499340
Articles are hosted by Taylor and Francis Online.
In our earlier work, a computer code based on Method of Characteristics (MOC) was developed to solve the neutron transport equation for mainly assembly-level lattice calculations with reflective and periodic boundary conditions and to some extent core-level calculation with a vacuum boundary condition. Performance of the MOC code was also demonstrated with flat and linear flux approximations. Since neutron transport calculations involve extensive computation, an attempt is made to develop an efficient numerical recipe that will reduce the computation time. First, a conventional MOC solution of the neutron transport equation is transformed into a matrix equation to apply the Krylov subspace iteration method for accelerating the solution. It is found that even in the most sophisticated and compact formats, forming the matrix equation explicitly by storing its nonzero elements requires extremely large computer memory. Hence, an alternate way to apply the Krylov iteration is demonstrated by incorporating the effect of the matrix-based approach into the solution without storing the matrix elements. This computationally viable and novel acceleration technique is used in combination with the existing formalism of flat as well as linear flux approximation to solve a number of benchmark problems. Results show significant improvement in terms of faster convergence of the solution over the conventional inner-outer iteration without compromising accuracy.