ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jeffrey A. Favorite
Nuclear Science and Engineering | Volume 192 | Number 1 | October 2018 | Pages 80-114
Computer Code Abstract | doi.org/10.1080/00295639.2018.1471296
Articles are hosted by Taylor and Francis Online.
SENSMG is a tool for calculating the first-order sensitivities of reaction-rate ratios, keff, and α in critical problems and reaction-rate ratios, reaction rates, and leakage in fixed-source problems to multigroup cross sections, isotope densities, material mass densities, and interface locations using the PARTISN multigroup discrete-ordinates code by implementing Generalized Perturbation Theory. SENSMG can be used for one-dimensional spherical and slab (r) and two-dimensional cylindrical (r-z) geometries. For fixed-source (leakage) problems, SENSMG relies on the MISC and/or SOURCES4C codes to compute neutron source rate densities from spontaneous fission and (α,n) sources. SENSMG is a combination of Python and Fortran and was developed under Linux. This computer code abstract describes all user inputs, the input file, and output files. This computer code abstract describes how SENSMG can be modified to support different computer platforms, PARTISN versions, or cross-section availability. Several verification problems are presented in which SENSMG results are compared with MCNP6, SCALE6.2, and direct perturbations (central differences). SENSMG is available at https://github.com/jafavorite/SENSMG. SENSMG can be modified to accommodate other deterministic transport codes that have an adjoint capability.