ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
About Studsvik Scandpower
Studsvik Scandpower (SSP) is the leading global provider of vendor-independent, state-of-the-art nuclear fuel management software and world-class engineering services. SSP offers a full suite of software product offerings, training, and engineering services, to support operating utilities, fuel vendors, safety authorities, and research organizations around the world.
Taichi Matsumura, Ryuji Nagaishi, Jun-ichi Katakura, Masahide Suzuki
Nuclear Science and Engineering | Volume 192 | Number 1 | October 2018 | Pages 70-79
Technical Paper | doi.org/10.1080/00295639.2018.1493856
Articles are hosted by Taylor and Francis Online.
In order to evaluate three-dimensional distributions of radionuclides with high precision from gamma-scanning profiles of adsorption vessels used for decontamination of radioactive water performed at severe accidents, gamma scanning of the submerged demineralizer system vessel at the Three Mile Island Unit 2 (TMI-2) accident was simulated in the axial and radial directions of real and cylindrical-shaped vessels using a Monte Carlo calculation code [Particle and Heavy Ion Transport Code System (PHITS)].
In the axial simulation, the true distribution of radioactive 137Cs in the zeolite packed bed of the vessel was successfully evaluated when a correction function derived from a virtual constant distribution of 137Cs was applied to the reported gamma-scanning profile. In the radial simulation, the virtual disk-formed and shell-formed sources of 137Cs displaced in the packed bed were clearly observed from the top and bottom views of the vessel. This new radial gamma scanning indicates that the radial localization of 137Cs could be well observed by measuring the gamma ray from the top view of the vessel during storage. Further, the radial gamma scanning from the side view and whether or not the radial localization of 137Cs can be confirmed in the normally existing gamma-scanning room were examined.