ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
About Studsvik Scandpower
Studsvik Scandpower (SSP) is the leading global provider of vendor-independent, state-of-the-art nuclear fuel management software and world-class engineering services. SSP offers a full suite of software product offerings, training, and engineering services, to support operating utilities, fuel vendors, safety authorities, and research organizations around the world.
Woosong Kim, Kyunghoon Lee, Yonghee Kim
Nuclear Science and Engineering | Volume 192 | Number 1 | October 2018 | Pages 1-20
Technical Paper | doi.org/10.1080/00295639.2018.1497396
Articles are hosted by Taylor and Francis Online.
The Albedo-corrected Parameterized Equivalence Constants (APEC) method, a new leakage correction method for two-group nodal analysis of light water reactors, has been extended to discontinuity factor (DF) correction. First, the error of nodal calculations induced by an inaccurate assembly discontinuity factor (ADF) is evaluated using the reference two-group cross section (XS) and DF calculated from heterogeneous core transport calculations. Functionalization of DF is performed by finding relationships between surfacewise current-to-flux ratio and change of DF from ADF. The least-squares method is used to fit several candidate functions to various core calculation results. The coefficients of APEC XS and DF correction functions are determined considering several color-set models. In this work, the two-dimensional method of characteristics–based lattice code DeCART2D is used for reference core calculations and lattice calculations. The extended APEC method is implemented in an in-house NEM nodal code using the partial-current coarse mesh finite difference acceleration. A small modular reactor (SMR) initial core benchmark is analyzed to evaluate the performance of the extended APEC method. In addition, the extended APEC method is applied to several variants of the SMR core and large variants to assess its general applicability.