ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Kazuki Kuwagaki, Jun Nishiyama, Toru Obara
Nuclear Science and Engineering | Volume 191 | Number 2 | August 2018 | Pages 178-186
Technical Note | doi.org/10.1080/00295639.2018.1463744
Articles are hosted by Taylor and Francis Online.
In the breed and burn (B&B) strategy, low-reactivity fuels are loaded in a core. It is difficult to keep criticality in operating a small core. To enhance the potential for achieving criticality, the neutron economy in a core should be improved. One improvement method is to increase the core size and reduce neutron leakage. If it is necessary to avoid the large-sized core, another method is to locate high-reactivity fuels in high-neutron-importance region continuously through an equilibrium burnup state. On the other hand, to stabilize the change of neutron flux and power distribution during the operation, the B&B regions need to be kept stationary in the same region.
In this study, a rotational fuel-shuffling concept was proposed. In this concept, fuel assemblies are moved to the next position step by step in a divided symmetry core region. Fresh fuel is loaded from the periphery and moved toward the center region, then moved outward and discharged. If the core could achieve an equilibrium state at which high-reactivity fuels are continuously placed in the core center region, it would be possible to keep the B&B regions stationary. In this kind of equilibrium state, high-reactivity fuels are placed in high-neutron-importance region stably. Simulations for this concept were performed using the continuous-energy Monte Carlo code MVP/MVP-BURN. A small lead-bismuth-cooled fast reactor with metallic fuel was adopted as the core design. As a result, a core with rotational fuel shuffling achieved an equilibrium cycle at criticality, and the change of multiplication factors in the equilibrium cycle was less than 0.1%. The neutron flux and power distributions were almost unchanged during the operation. In addition, high-reactivity fuels were constantly placed in the high-neutron-flux region. It was found that this concept can achieve criticality and a stable power profile.