ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Remembering ANS member Gil Brown
Brown
The nuclear community is mourning the loss of Gilbert Brown, who passed away on July 11 at the age of 77 following a battle with cancer.
Brown, an American Nuclear Society Fellow and an ANS member for nearly 50 years, joined the faculty at Lowell Technological Institute—now the University of Massachusetts–Lowell—in 1973 and remained there for the rest of his career. He eventually became director of the UMass Lowell nuclear engineering program. After his retirement, he remained an emeritus professor at the university.
Sukesh Aghara, chair of the Nuclear Engineering Department Heads Organization, noted in an email to NEDHO members and others that “Gil was a relentless advocate for nuclear energy and a deeply respected member of our professional community. He was also a kind and generous friend—and one of the reasons I ended up at UMass Lowell. He served the university with great dedication. . . . Within NEDHO, Gil was a steady presence and served for many years as our treasurer. His contributions to nuclear engineering education and to this community will be dearly missed.”
Indrajeet Singh, Anurag Gupta, Umasankari Kannan
Nuclear Science and Engineering | Volume 191 | Number 2 | August 2018 | Pages 161-177
Technical Note | doi.org/10.1080/00295639.2018.1463745
Articles are hosted by Taylor and Francis Online.
A combination of the neutronics features of gas-cooled high-temperature reactors by using the fuel in the form of ceramic-coated particles, called tristructural-isotropic, and the heat removal feature of molten salt reactors by using molten salt as a coolant is an attractive option in designing a reactor with a high-power density operation without compromising the safety aspects. Neutronics feasibility of such a combination of the molten salt (LiF-BeF2) as a coolant and thorium-based fuel, in particular (Th-233U)O2, in a graphite-moderated system is investigated. This technical note presents the influence of the heavy metal (HM) loading on neutronics features of a pebble lattice cell, that is, infinite multiplication factor (K-inf), temperature coefficients of reactivity (TCR), the void reactivity coefficient, etc. In addition, enriched uranium fuel has also been studied just to make a comparison with thorium-based fuel. Furthermore, the minimum HM loading of fuel per pebble that is needed to achieve negative coolant-temperature reactivity coefficients and void reactivity coefficients has been estimated for molten salt coolant.
The analyses show that Th2/U3 fuel gives a less negative fuel temperature reactivity coefficient as compared with that of uranium-based fuel. This study also shows that all the TCR of both fuel types improve, becoming less positive or more negative, by increasing HM loading per pebble. Further, the burnup dependence of K-inf and the reactivity coefficients are studied for limiting HM loadings, e.g., 30 g per pebble. The change in the spectrum and the four-factor formula are used to explain the behavior of the reactivity coefficients as a function of HM loading and burnup.