ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Han Zhang, Jiong Guo, Jianan Lu, Fu Li, Yunlin Xu, T. J. Downar
Nuclear Science and Engineering | Volume 190 | Number 3 | June 2018 | Pages 287-309
Technical Paper | doi.org/10.1080/00295639.2018.1442061
Articles are hosted by Taylor and Francis Online.
This paper evaluates the performance of neutronic and thermal-hydraulic coupling algorithms in transient problems based on the high-temperature gas-cooled reactor simulator TINTE. In particular, the operator splitting semi-implicit (OSSI), Picard iteration, and Jacobian-free Newton-Krylov (JFNK) methods are compared by a practical engineering model. The OSSI method is employed in the original TINTE. The fully implicit algorithms TINTE-Picard and TINTE-JFNK are implemented in this study. Several special numerical technologies are discussed to improve the performance of JFNK. First, a novel JFNK variant is employed to deal with the multiscale coupling between local fuel sphere temperature and global solid porous media temperature. Second, the preconditioning strategy is determined by making a balance between performance and code burden. Finally, the scaling modifications of the Jacobian matrix and perturbation size are investigated to solve the ill-posed problem. What is more, the framework of TINTE-Picard and TINTE-JFNK is presented, and the key points of implementation are discussed. Numerical results indicate that the advanced coupling algorithms Picard and JFNK can achieve higher computational performance than the original semi-implicit coupling algorithm in TINTE due to the accuracy and stability advantage.