ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Patrick Jaffke
Nuclear Science and Engineering | Volume 190 | Number 3 | June 2018 | Pages 258-270
Technical Paper | doi.org/10.1080/00295639.2018.1429173
Articles are hosted by Taylor and Francis Online.
We present a self-consistency analysis of fission product yield evaluations. Anomalous yields are determined using a series of simple conservation checks and comparing charge distributions with common parameterizations. The summed average prompt neutron multiplicity for both products as a function of the heavy product mass is derived directly from the independent fission product yields with a procedure utilizing average charge conservation. This procedure is validated with Monte Carlo simulations of the de-excitation of the fission fragments in a Hauser-Feshbach statistical decay framework. The derived is compared with experimental data, when available, and then used to determine the prompt neutron multiplicity for the various evaluations. The propagated errors on from the average charge conservation method are significantly lower than the simple summation rules, which reveals that some evaluations are inconsistent with prompt neutron data. We propose possible solutions to remedy the observed inconsistencies and identify sources of the observed differences in between the various evaluation libraries.