ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Shashi Kant Verma, S. L. Sinha, D. K. Chandraker
Nuclear Science and Engineering | Volume 190 | Number 2 | May 2018 | Pages 195-208
Technical Paper | doi.org/10.1080/00295639.2017.1413874
Articles are hosted by Taylor and Francis Online.
The objective of the present work is to establish the effect of spacer and geometrical parameters of nuclear fuel rods on the turbulent mixing rate in subchannels of the advanced heavy water reactor (AHWR) rod bundle. Experiments on the AHWR rod bundle have been carried out in a scaled test facility developed at Bhabha Atomic Research Centre, Trombay, Maharashtra. In order to confirm the validity of the proposed method, experimental data on the turbulent mixing rate were obtained using a tracer technique under adiabatic conditions with 3.5-m vertical test channels, consisting of three subchannels. The spacer was installed at 2963 mm (37 mm at the end of the mixing section), 2926 mm (74 mm at the end of the mixing section), and 2889 mm (111 mm at the end of the mixing section) from the entry section in the test section, respectively, for three different positions. The experimental results (blockage ratio 4%) have been compared with the case without spacer and finally new correlations have been developed between average mixing number, combined Reynolds number, and gap-to-centroidal ratio (S/δ). The range of average Reynolds number covered was 0 to 6424. The correlation is applicable for a vertical pressure tube–type boiling water reactor (AHWR) with a reasonable accuracy. The instrument was calibrated prior to each set of analyses with standard solution. It predicts a reasonable mixing at a higher S/δ as compared to without spacer, which is the most improved feature of the correlation when compared with the existing ones. The uncertainty analysis has been carried out for the measurement of flow rate, concentration, and height of the test section. The proposed correlation may be applicable for the thermal-hydraulic design of an AHWR with an improved accuracy. A complete set of mixing data was obtained which can be used to calibrate thermal-hydraulic codes.