ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Yu Weng, Fangfang Cao, Xiaobing Tuo, Hongfang Gu, Haijun Wang
Nuclear Science and Engineering | Volume 190 | Number 1 | April 2018 | Pages 93-104
Technical Paper | doi.org/10.1080/00295639.2017.1417345
Articles are hosted by Taylor and Francis Online.
In a 1250-MW pressurized water reactor (PWR), coolant is injected into the reactor vessel under accident conditions through the method of direct injection, which is the most important function of the emergency core cooling system. Since the problem has been found that safety injection start-up will have a significant thermal effect on the reactor’s internal system, a confirmatory study of an improved structure is required in the initial design stage. In this paper, the heat transfer and flow characteristics of the core barrel, the neutron shielding panels, and the radiation surveillance capsules are investigated by a scaled experiment combined with a numerical method to obtain the distribution of the wall temperature and the convective heat transfer coefficient on the outer wall of the reactor internals under different injection conditions. In addition, potentially dangerous parts have been pointed out, and dimensionless correlations are fitted to describe the heat transfer laws of key parts of reactor internals for use in reactor design. This research fills in the gaps in the study of heat transfer under direct injection of the reactor internals in a PWR, providing support for the safety of the reactor structure.