ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Balazs Molnar, Gabor Tolnai, David Legrady
Nuclear Science and Engineering | Volume 190 | Number 1 | April 2018 | Pages 56-72
Technical Paper | doi.org/10.1080/00295639.2017.1413876
Articles are hosted by Taylor and Francis Online.
A novel particle tracking framework is introduced in this paper that utilizes null-collisions to sample distance to collision in Monte Carlo particle transport problems. The sampling process is described in the most general form as it covers all of the main developments concerning the Woodcock method (delta tracking). We show that none of the previously suggested modifications are optimal in terms of either variance or efficiency. Variance analysis is provided for a general transport problem along with the estimation of computational cost. Simplified models with analytic solutions are further investigated and propositions for optimal settings are discussed based on the derived equations. A well-known variance reduction technique, exponential transform, is found to be a limiting case of the biased Woodcock tracking method and comparison shows the proposed framework may outperform the exponential transform in real-case scenarios.