ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Matteo Gamarino, Aldo Dall’Osso, Danny Lathouwers, Jan Leen Kloosterman
Nuclear Science and Engineering | Volume 190 | Number 1 | April 2018 | Pages 1-30
Technical Paper | doi.org/10.1080/00295639.2017.1417214
Articles are hosted by Taylor and Francis Online.
Nodal diffusion is currently the preferred neutronics model for industrial reactor core calculations, which use few-group cross-section libraries generated via standard assembly homogenization. The infinite-medium flux-weighted cross sections fail to capture the spectral effects triggered in the core environment by nonreflective boundary conditions at the fuel-assembly edges. This poses a serious limitation to the numerical simulation of current- and next-generation reactor cores, characterized by strong interassembly heterogeneity.
Recently, a spectral rehomogenization method has been developed at AREVA NP. This approach consists of an on-the-fly modal synthesis of the spectrum variation between the environmental and infinite-medium conditions. It uses information coming from both the nodal simulation and the lattice transport calculation performed to compute the standard cross sections. The accuracy of the spectral corrections depends on the choice of the basis and weighting functions for the expansion and on the definition of a realistic energy distribution of the neutron leakage. In this paper, we focus on the first aspect. Two tracks are researched: a combination of analytical functions (with a physically justified mode) and a mathematical approach building upon the Proper Orthogonal Decomposition. The method is applied to relevant pressurized-water-reactor benchmark problems. We show that the accuracy of the cross sections is significantly improved at reasonably low computational cost and memory requirement. Several aspects of the methodology are discussed, such as the interplay with space-dependent corrections. We demonstrate that this approach can model not only the spectral interactions between dissimilar neighbor assemblies but also the spectral effects due to different physical conditions (namely, multiplicative properties) in the environment and in the infinite medium.