ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Baoqing Liu, Ruijia Cheng, Yanan Zhang, Xiaoge Chen, Zilong Xu
Nuclear Science and Engineering | Volume 189 | Number 3 | March 2018 | Pages 290-300
Technical Note | doi.org/10.1080/00295639.2017.1394084
Articles are hosted by Taylor and Francis Online.
Fluid-elastic instability is the major factor in causing the vibration of tube bundles. Design guidelines on fluid-elastic instability in tube bundles is necessary to avoid damage due to excessive tube vibration. However, the design guidelines on fluid-elastic instability in tube bundles subjected to two-phase cross flow have no consistent conclusions. Accordingly, this technical note researches the vibration characteristics of three tube bundle distributions, namely, normal square tube bundles with pitch-to-diameter ratios of 1.28 and 1.32 and a normal triangular tube bundle with a pitch-to-diameter ratio of 1.32. Comparison of the present fluid-elastic threshold results with previously published data shows good agreement in single-phase flow. The effects of pitch-to-diameter ratio and tube bundle configurations on fluid-elastic instability induced by air-water cross flow were also compared and analyzed by measuring unstable behavior of tube bundles. It was found that fluid-elastic instability is more prone to occur with a decrease of pitch-to-diameter ratio and that the normal square tube bundle is more stable than the normal triangular tube bundle. From the perspective of the tube bundle configurations, it was recommended that the instability constant K in normal triangular and normal square tube bundles be 3.4 and 4.0, respectively.