ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
Weixiong Zheng, Ryan G. McClarren, Jim E. Morel
Nuclear Science and Engineering | Volume 189 | Number 3 | March 2018 | Pages 259-271
Technical Paper | doi.org/10.1080/00295639.2017.1407592
Articles are hosted by Taylor and Francis Online.
In this work, we present a subdomain discontinuous least-squares (SDLS) scheme for neutronics problems. Least-squares (LS) methods are known to be inaccurate for problems with sharp total cross-section interfaces. In addition, the LS scheme is known not to be globally conservative in heterogeneous problems. In problems where global conservation is important, e.g., k-eigenvalue problems, a conservative treatment must be applied. In this study, we propose an SDLS method that retains global conservation and, as a result, gives high accuracy on eigenvalue problems. Such a method resembles the LS formulation in each subdomain without a material interface and differs from LS in that an additional LS interface term appears for each interface. The scalar flux is continuous in each subdomain with the continuous finite element method while discontinuous on interfaces for every pair of contiguous subdomains. The SDLS numerical results are compared with those obtained from other numerical methods with test problems having material interfaces. High accuracy of scalar flux in fixed-source problems and in eigenvalue problems is demonstrated.