ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Xuan Ha Nguyen, Yonghee Kim
Nuclear Science and Engineering | Volume 189 | Number 3 | March 2018 | Pages 224-242
Technical Paper | doi.org/10.1080/00295639.2017.1394086
Articles are hosted by Taylor and Francis Online.
Detailed pin-by-pin core calculations are under development to replace the conventional assembly-based nodal methods. This research investigates a novel intrapin reconstruction procedure coupled with these pinwise calculations to obtain a detailed power profile within a fuel rod. The reconstruction process is based on the well-established form function (FF) method. In this paper, the fuel rod is geometrically divided into 40 equi-volume subsections where the intrapin power is reconstructed with corresponding heterogeneous FF. The intrapin homogeneous flux distributions are approximated by using the analytical solution of the two-group neutron diffusion equation with pinwise boundary constraints. Four types of constraints are considered to determine the flux shapes: surface-average net current, surface-average, corner-point, and volume-average cell fluxes. Therefore, six different combinations of the boundary constraints are separately evaluated for the intrapin power profile. All necessary information, including burnup-dependent FFs, homogenized group constants, reference power distribution, and pinwise boundary constraints, are predetermined from a high-fidelity Monte Carlo calculation. The numerical results demonstrate that the intrapin power can be retrieved for enriched and Gd-loaded fuel pins with reasonable accuracy, even at rodded conditions and in highly burned conditions of 10 and 30 GWd/tonne U. In addition, a sensitivity analysis is also performed to assess the feasibility of the proposed method when it is coupled with a pinwise calculation.