ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
M. Fukushima, J. Goda, J. Bounds, T. Cutler, T. Grove, J. Hutchinson, M. James, G. McKenzie, R. Sanchez, A. Oizumi, H. Iwamoto, K. Tsujimoto
Nuclear Science and Engineering | Volume 189 | Number 1 | January 2018 | Pages 93-99
Technical Note | doi.org/10.1080/00295639.2017.1373520
Articles are hosted by Taylor and Francis Online.
To validate lead (Pb) nuclear cross sections, a series of integral experiments to measure lead void reactivity worths was conducted in a high-enriched uranium (HEU)/Pb system and a low-enriched uranium (LEU)/Pb system using the Comet Critical Assembly at the National Criticality Experiments Research Center. There is a follow-on experiment to measure the lead void reactivity worths in a plutonium/Pb system that is currently under investigation. The critical experiments in the two uranium systems were designed to provide complementary data sets having different sensitivities to scattering cross sections of lead. The larger amount of the 238U present in the LEU/Pb core increases the neutron importance above 1 MeV compared with the HEU/Pb core. Since removal of lead from the core shifts the neutron spectrum to the higher energy region, positive lead void reactivity worths were observed in the LEU/Pb core while negative values were observed in the HEU/Pb core. This technical note is a preliminarily report of the experimental analysis results for the lead void reactivity worths with the Monte Carlo calculation code MCNP® version 6.1 together with nuclear data libraries JENDL-4.0 and ENDF/B-VII.1. The calculation values were found to overestimate the negative reactivity worths for the HEU/Pb core while being consistent for the LEU/Pb core.