ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Franklin G. Curtis, James D. Freels, Kivanc Ekici
Nuclear Science and Engineering | Volume 189 | Number 1 | January 2018 | Pages 82-92
Technical Paper | doi.org/10.1080/00295639.2017.1379304
Articles are hosted by Taylor and Francis Online.
As part of the Global Threat Reduction Initiative, the Oak Ridge National Laboratory is evaluating conversion of fuel for the High Flux Isotope Reactor (HFIR) from high-enriched uranium to low-enriched uranium. Currently, multiphysics simulations that model fluid-structure interaction phenomena are being performed to ensure the safety of the reactor with the new fuel type. A monolithic solver that fully couples fluid and structural dynamics is used to model deflections in the new design. A classical experiment is chosen to validate the capabilities of the current solver and the method. A single-plate simulation with various boundary conditions as well as a five-plate simulation are presented. Use of the monolithic solver provides stable solutions for the large deflections and the tight coupling of the fluid and structure and the maximum deflections are captured accurately.