ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Denver Airport may go nuclear
Colorado’s first nuclear power plant of the 21st century could be built at an unconventional site: the Denver International Airport (DEN).
In its mission to gain energy independence and become the greenest airport in the world, DEN has announced that it will conduct a feasibility study to determine the viability of building a small modular reactor on its 33,500-acre campus.
David Halabuk, Tomas Navrat
Nuclear Science and Engineering | Volume 189 | Number 1 | January 2018 | Pages 69-81
Technical Paper | doi.org/10.1080/00295639.2017.1373518
Articles are hosted by Taylor and Francis Online.
This paper presents a thermomechanical assessment of various types of fuel cladding during a reactivity-initiated accident (RIA) which is simulated by the finite element analysis program ANSYS. Four cladding concepts are analyzed; one concept considers currently used zirconium alloy and three concepts consider silicon carbide (SiC) material. The SiC claddings consist either of composite material or of a two-layered structure formed of SiC composite and monolithic SiC. Each cladding is analyzed for two states of nuclear fuel: fresh and high burnup. A gap that exists between fuel pellets and cladding in fresh state is either reduced or removed in a high burnup state. It was shown that zirconium cladding resists RIA conditions very well in fresh state, however, in high burnup state significant stress and plastic strain occur. The SiC cladding was shown to have many advantages over zirconium alloy. Nevertheless, its lower strength appears to be critical in RIA conditions when cladding needs to withstand exceeding loading after the fuel-cladding gap disappears due to the expansion of the fuel pellet.