ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
David Halabuk, Tomas Navrat
Nuclear Science and Engineering | Volume 189 | Number 1 | January 2018 | Pages 69-81
Technical Paper | doi.org/10.1080/00295639.2017.1373518
Articles are hosted by Taylor and Francis Online.
This paper presents a thermomechanical assessment of various types of fuel cladding during a reactivity-initiated accident (RIA) which is simulated by the finite element analysis program ANSYS. Four cladding concepts are analyzed; one concept considers currently used zirconium alloy and three concepts consider silicon carbide (SiC) material. The SiC claddings consist either of composite material or of a two-layered structure formed of SiC composite and monolithic SiC. Each cladding is analyzed for two states of nuclear fuel: fresh and high burnup. A gap that exists between fuel pellets and cladding in fresh state is either reduced or removed in a high burnup state. It was shown that zirconium cladding resists RIA conditions very well in fresh state, however, in high burnup state significant stress and plastic strain occur. The SiC cladding was shown to have many advantages over zirconium alloy. Nevertheless, its lower strength appears to be critical in RIA conditions when cladding needs to withstand exceeding loading after the fuel-cladding gap disappears due to the expansion of the fuel pellet.