ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Woong Heo, Yonghee Kim
Nuclear Science and Engineering | Volume 189 | Number 1 | January 2018 | Pages 41-55
Technical Paper | doi.org/10.1080/00295639.2017.1373516
Articles are hosted by Taylor and Francis Online.
Thermomechanical effects, irradiation, and structural restrictions result in very tangled behavior of assemblies in sodium-cooled fast reactors (SFRs). Reactivity feedback caused by the assembly behavior (deformation or distortion) is one of the key parameters in the inherent safety analysis of fast reactor systems. However, to date there has been no accurate and efficient deterministic way to compute directly the reactivity changes by actual local perturbation. This paper evaluates the feasibility of applying the Galerkin finite element method (GFEM) based on linear shape functions to estimate reactivity changes due to local core deformations in SFRs. Assessment of reactivity changes is conducted for six types of deformation scenarios of the two-dimensional prototype Gen-IV SFR. Uniform expansions and local deformations are included in the scenarios. The results from the multigroup diffusion equation based on the GFEM are compared with references calculated by MCNP5. The study shows that diffusion analysis based on the GFEM with linear shape functions can properly estimate reactivity changes by core deformation in the fast reactor with ~13% relative error of Δρ.